OWLIM Cluster

is in use at the

BBC's 2010 World Cup Website

The **BigOWLIM** repository has been **successfully integrated** into the high performance **Semantic Web publishing stack** powering the BBC's 2010 World Cup site, performing OWL reasoning with continuously changing data and handling

millions of page requests per day

SEMANTIC REPOSITORIES

Semantic repositories or **semantic databases** are DBMS – their main function is to store and guery structured data. The essential difference from relational DBMS is that semantic repositories can infer non-explicit facts using:

- more expressive schema definitions (ontologies), encoding some of the semantics of the data
- inference mechanisms to interpret stored data

MORE INTELLIGENT QUERY ANSWERING

Semantic repositories offer greater analytical power. A guery can match criteria and return results based on data that differs from the query patterns, but bears relevant meaning.

For instance, a guery pattern "Maria, relativeOf, ?x" can return Ivan as a match based only on the assertion"Ivan,child-of,Maria" (see the graph below).

Naive OWL Fragments Map

OWLIM IS AN EFFICIENT RDF DATABASE

OWLIM is a mature, native RDF semantic repository. Its performance, efficiency and robustness allow it to replace legacy DBMS in avery widerange of applications.

OWLIM is particularly suitable for:

- Analytical tasks and Business Intelligence
- Integration of heterogeneous and sparse data

OWLIM IS ALSO AN INFERENCE ENGINE

It uses rule-ba sed reason ing to support:

- RDFS, OWL Horst and OWL 2 RL
- Custom semantics via rules and axiomatic triples

http://www.ontotext.com/owlim

is a Robust Semanitc Repository

SEMANTIC DATA INTEGRATION

Semantic repositories provide an ideal platform for dataintegration because RDF is designed for the management of data created without centralized control:

- New data sources can be adopted with little effort
- Schema changes are easy to accommodate

RDF REPRESENTS A GENERIC DATA MODEL

- the logical structure of data is not fixed in its physical representation
- structure and semantics are interpreted, based on RDFS schemata and OWL ontologies

The diagram below illustrates the differences between data representation in a sample relational database model (on the right) and the corresponding RDF model (on the left).

Statement										
Subject	Predicate	Object								
myo:Person o←	rdf:type o	rdfs:Class o								
myo:gender ○ ←	rdfs:type O	rdfs:PropertyO								
myo:parent 👓	rdfs:range O	myo:Person								
myo:spouse 🔉	rdfs:range O	myo:Person o								
myd:Maria O	rdf:type O	myo:Person o								
myd:Maria O	rdf:label O	"Maria P." o								
myd:Maria O	myo:gendero	"F" o								
myd:Maria O	rdf:label O	"Ivan Jr." O								
myd:Ivan	myo:gender	"M" o								
myd:Maria O	myo:parent o	Myd:Ivan ♀								
myd:Maria o	myo:spouse o	myd:John o								
0	0	0								

OWLIM IN USE

BIGOWLIM IN LIFE SCIENCES

Integration of large-scale KB in the LinkedLifeData platform, consolidating biomedical databases

BUNDLED IN GATE AS AN ONTOLOGY SERVICE

GATE is the most popular text mining platform

INTEGRATED IN PROFIUM METADATA SERVER

BigOWLIM is integrated in Profium Metadata Server, which is heavily used for content delivery in the publishing industry

IN KIM PLATFORM AS A SEMANTIC REPOSITORY

KIM is a semantic annotation and search platform

IN TOPBRAID COMPOSER AS A REASONER

TBC is one of the most advanced RDF/OWL editors

THE DATA LAYER OF THE LARKC PROJECT

LarKC is probably the most ambitiuous large - scale reasoning project, http://www.larkc.eu/

	Person								
	ID	Na	Name			Ge	end	er	
	► 10 ◄	M	Maria P.			F			
	► 20	lva	Ivan Jr.			M			
	30 -								
							ı		
		느	_						
Par	ent						Spouse		
Par <mark>I</mark> D	Chill			S1	ID	S2	ID	From	То
1 6	2 6			1 6		30			

BigOWLIM 3.3 Released

Proven to Handle **Millions of Queries** per Day in Critical Applications, Supports **OWL 2 RL** Reasoning and Provides Unmatched **Linked Data Integration**, Management and Retrieval Capabilities

Based on published results and independent evaluations BigOWLIM is:

- The most scalable semantic repository in the world [1]
- The **most efficient** semantic repository in the World [2,3], in terms of speed with which it can load, do inferencing, and query the data
- The repository offering the **most comprehensive reasoning** support [3,4]. It supports RDFS, OWL-Horst, and **OWL 2 RL** and custom rule-sets. BigOWLIM is the only repository which provides comprehensive OWL 2 RL support today [5]

Any combination of 3 of the following features put BigOWLIM outside competition:

- Pure **Java implementation** and fully compatible with **Sesame 2**, which brings interoperability benefits and support for all popular RDF syntaxes and query languages, including **SPARQL**
- Clustering support brings resilience, failover and horizontally scalable parallel query processing
- **Optimized owl:sameAs** handling, which delivers dramatic improvements in performance and usability when huge volumes of data from multiple sources are integrated
- Full-text search, based on either Lucene or proprietary techniques
- High performance retraction of statements and their inferences
- Powerful and expressive consistency checking mechanisms
- RDF rank, similar to Google's PageRank, can be calculated for the nodes in an RDF graph and used for ordering query results by relevance
- Notification mechanism, to allow clients to react to updates in the data

Notes

- [1] Large Triple Stores. Wiki page supported by W3C. http://esw.w3.org/LargeTripleStores
- [2] BSBM Results for Virtuoso, Jena TDB, BigOWLIM (November 2009). Bizer, Ch., Schultz, A. http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V5/index.html
- [3] "In our tests, BigOWLIM provides the best average query response time and answers maximum number of queries for both the datasets. ... it is clear to see that execution speed-wise BigOWLIM outperforms Allegrograph and Sesame for almost all of the dataset queries." Thakker, D., Osman, T., Gohil, S., Lakin, P. (Press Association and the Nottingham Trent University).

 A Pragmatic Approach to Semantic Repositories Benchmarking. In Proc. of the 7th Extended Semantic Web Conference, ESWC 2010
- [4] Stoilos G., Grau B. C., Horrocks I. How Incomplete is your Semantic Web Reasoner? In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 10), 2010. To appear.
- [5] Implementations OWL. http://www.w3.org/2007/OWL/wiki/Implementations