Information—Integration—Intelligence Solutions

The Netherlands Ministry of Justice

Webinar – May 13, 2010

Netherlands Ministry of Justice Metadata Workbench

Supporting the Complete Semantic Application Lifecycle

Webinar Agenda and Logistics

Agenda

Welcome	5 min
Brief Overview Presentation	15 min
Demo	20 min
Q&A	10 min

Close

Logistics

- □ Total Time for Webinar 50 min
- □ Q&A: please type in questions during the webinar
 - We will be monitoring
 - Some selected questions will be read and answered during Q&A
 - All questions will be answered in writing and posted on TQ web site
- □ Recording? Yes, it will be made available on TQ web site

Presenters

Ralph Hodgson

- co-founder and CTO of TopQuadrant, Inc., a USheadquartered company that specializes in semantic technology consulting, training, tools and platforms;
- Lead Ontologist for the NASA NExIOM Ontologies.
- Prior to starting TopQuadrant in 2001, Executive Consultant at IBM Global Services and founding member of the Portal and Object Technology Practices;
- Co-authored Vadaptive Information, published by John Wiley in 2004, and Capability Cases: A Solution Envisioning Approach, published by Addison-Wesley in July 2005.
- Member of INCOSE, and participates in the Model-Based Systems Engineering Initiative.

Daniel Mekonnen

- Semantic Solution Architect of TopQuadrant, Inc. since the fall of 2006.
- Semantic integration consultant for the Kennedy Space Center's Launch Control Systems group.
- Netherlands Ministry of Justice Metadata Workbench Application Developer.
- Ontologist for the NASA NExIOM Ontologies.
- Prior to working at TopQuadrant, Aerospace and Missile Systems Engineer at General Dynamics.

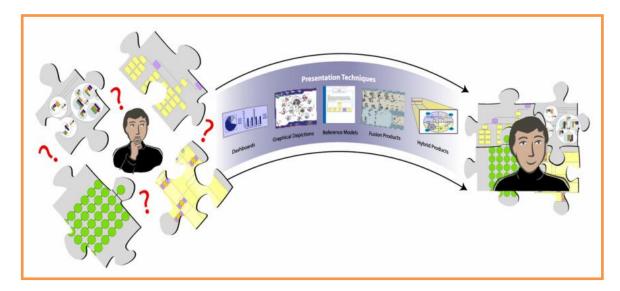
Goals of this presentation

□ Explain:

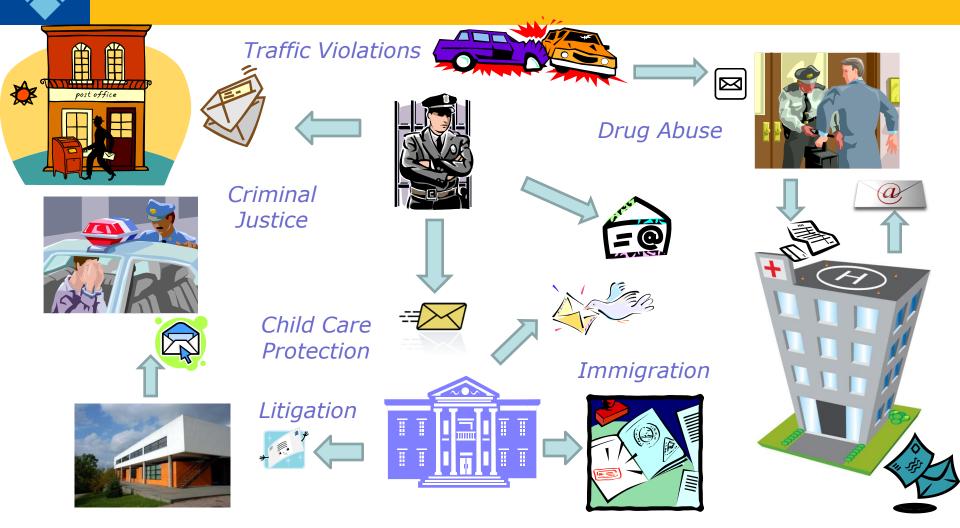
- The Problem of XML Message Exchange
- The Solution: an Ontology-Based Solution for the design of CCTS-compliant XML Message Exchanges

Demonstrate:

- The Netherlands Ministry of Justice Workbench for CCTScompliant XML Schema Generation
- Provide some insight into how this was built using:
 Semantic Web Technologies RDF, OWL and SPARQL
 TopQuadrant's TopBraid Suite, SPIN and SPARQLMotion
 Adobe FLEX
- Finish in Time for Questions:


Balance desire to do deep dives with attention to the time

Systems that communicate effectively across company boundaries require common business semantics.


Forces

- Data is in many different systems often not designed with sharing in mind
- Increasing need for a common standard across organizations
- Business documents/messages need to be tailored for local use

TopQuadrant™

Justice Data Exchange covers may Domains of Law

Seamless data exchanges are challenging:

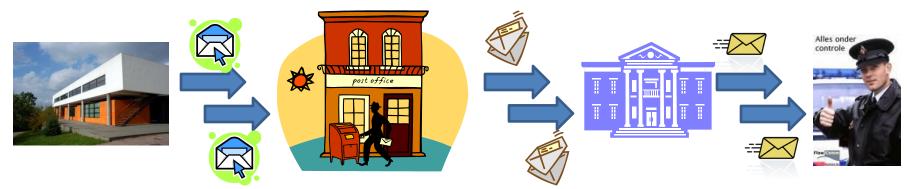
Unique data requirements exist at courts, police, hospitals, border control, motor vehicle, local and federal offices.

© Copyright 2010 The Netherlands Ministry of Justice, TopQuadrant Inc.

Without Semantic and Structural Alignment, Data Exchanges result in significant failures and overheads

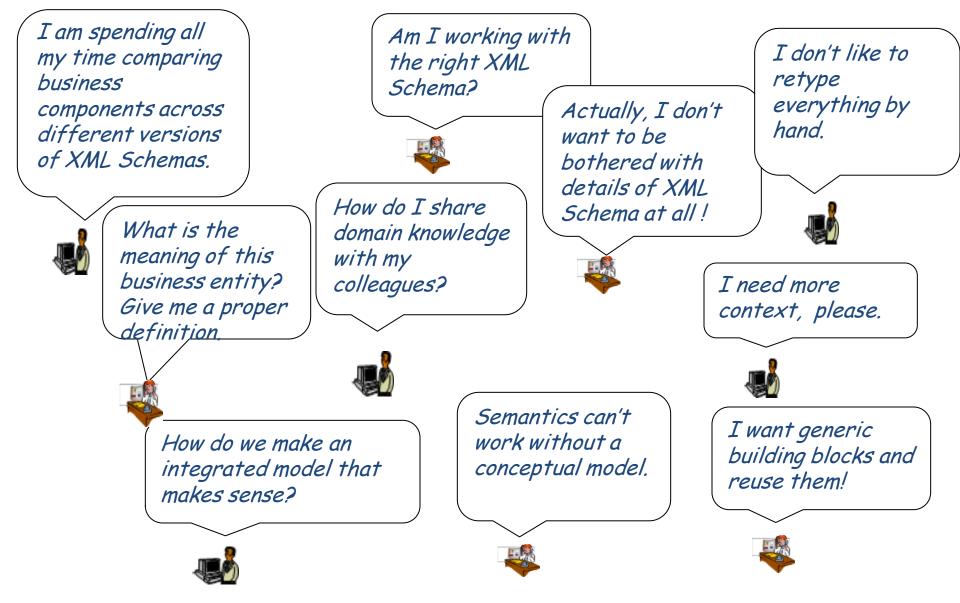
Poor Legislative Compliance

Failure to have legislation changes show up in data exchanges

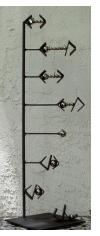

Poor Message Localization

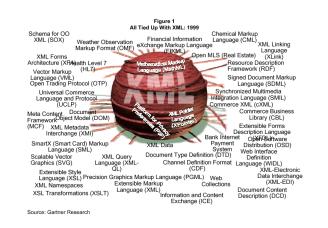
Unique data requirements are not addressed well

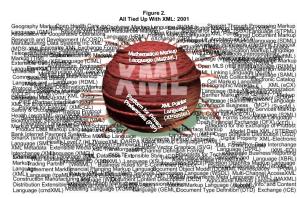
Rework and manually tailoring of schemas


Poor Data Quality

Mistakes due to incomplete data and misinterpreted data
Incorrect data results in the need to re-send information.




The Evidence of the Problem for XML Message Builders


TopQuadrant"

Tangled Up in XML

Gartner: All Tied Up with XML: 1998

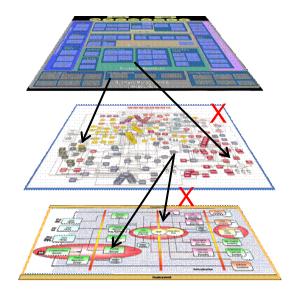
Source: Gartner Research

Gartner: All Tied Up with XML: 2001

2010: SOA and the "Cloud"

XML Challenges:

- How do you have common vocabularies
- How do you have a common way to construct schemas
- How do you represent data in a consistent way?
- How do you represent data types in a consistent way?
- ✤How do you preserve semantics?

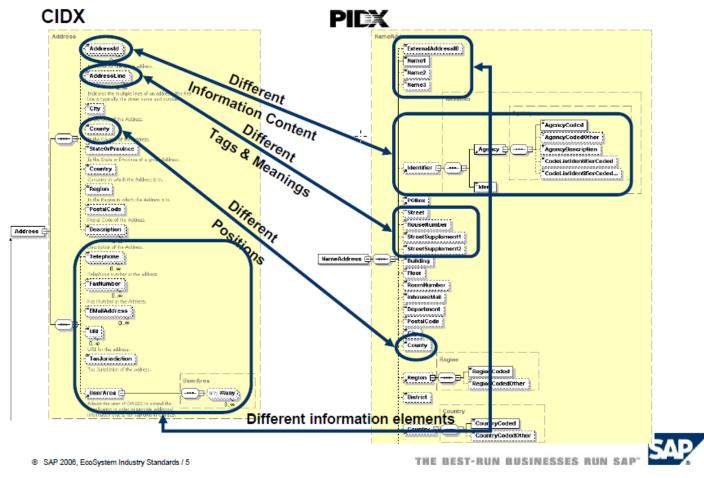


"Living in the XML Ecology" Challenges

Seamless data exchanges are challenging:

Addressing the "standards dilemma"

- Too many exchange mechanisms and standards
- Lack of conformance to XML (and OWL) Naming and Design Rules
- Brittleness in data models:
 - soften very complex,
 - often incomprehensible
 - Sometimes non-implementable.



What can go wrong with XML

Example Please!

Barriers to Semantic Interoperability

Source: "CCTS - Semantic Data Modeling Within and Across The Firewall", Mark Crawford and Gunther Stuhec, SAP

TopQuadrant's Ontology-Driven CCTS Message Builder Solution

First an Industry Survey of Interoperability Standards:

Software Engineering System Engineering	
MOF UML ISO 15926 STEP s1000d PLCS PDM PLM	1
ISO 12006-3 _{AP 233} FIATECH	
eBXML eOTD	
UN/EDIFACT Open-edi ISO 14662 SysMO EDI	
NASA CXDA	
UBL CCTS NEXIOM	-
Data Exchange XML SchemaPlus	
Genericode NIEM QUET	
OW	•
XIM	
MoDAF FEA XSLT -XMDR -	
DoDAF W3C and Semantic ISO 11179	
-Web Standards	
Enterprise Architecture Metadata Standards	

© Copyright 2007-2010 TopQuadrant Inc.

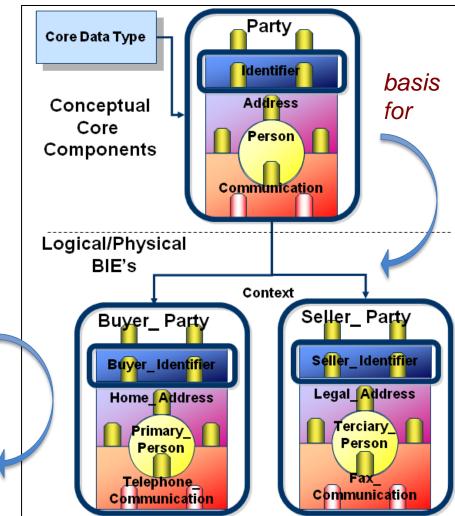
Image source: <u>http://hubblesite.org/newscenter/archive/2003/01/</u> - Abell 1689 deep space image Slide 13

Why Choose the UN/CEFACT CCTS Core Components Technical Specification?

UN/CEFACT CCTS – a standard with growing adoption

- Reusable building blocks for building business documents
- Based on a common semantic model
- Context support for industry/domain specific documents

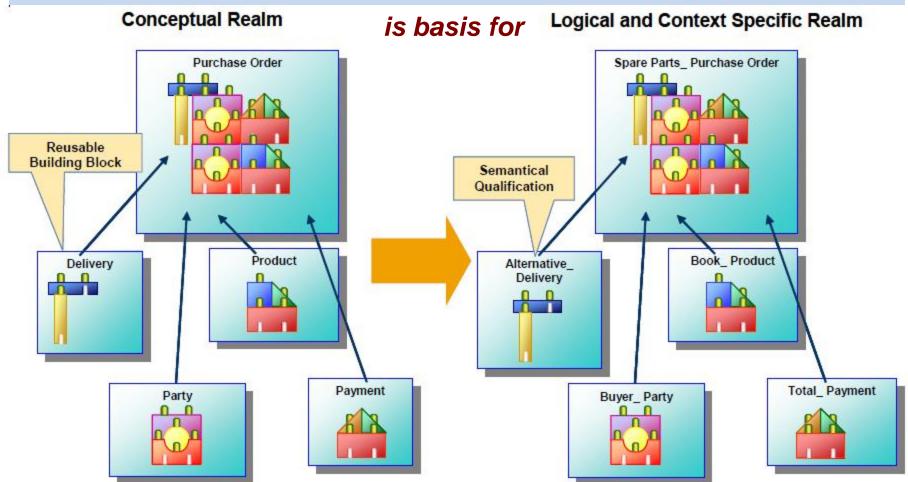
□ CCTS at a Glance:


Core Components:

basis for

 Basic Core Components, Aggregate Core Components, Association Core Components

Business Information Entities


 Basic Business Information Entities, Aggregate Business Information Entities, Association Business Information Entities

ref: "Electronic Data Interchange", Philipp Liegl, Business Informatics Group, Institute of Software Technology and Interactive Systems, Vienna University of Technology

CCTS Standard – "Building Blocks"

Semantics of the business information is based on a standard grammar and library that is well known and understood by both humans and machines.

From SAP Article: <u>How to Solve the Business Standards Dilemma - The Context Driven Business Exchange</u>

© Copyright 2007-2010 TopQuadrant Inc.

TopQuadrant™

□ Multiple Industries: (many use it through OAGIS)

- Automotive, Retail, eCommerce, Aerospace, ... (Who uses OAGIS?)
- Manufacturing (Standards for Manufacturing Systems Integration)
- ✤Telecom (OAGIS at SonyEricsson)

Government Data Exchange

- ✤ USAF (US Air Force/Open Applications Group Activities)
- Department of Navy (XML Naming and Design Rules)
- DOD, DCMA (Using Data Exchange Standards to Improve Program Management Data Quality)

And by Vendors

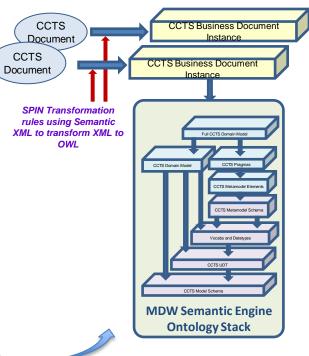
- ♦ SAP (UN CEFACT CCTS SAP Developer Network)
- **⇔**IBM

TopOuadrant™

Metadata Work			Austiciële Informatiedienst Rintoerie van Justite		elies: Useri 📦 tegoti Ontology: 🖹 See. 🖄 tellac			
Core Components Codelists	coalfied	datatypes Busine	aa Information Exten	an Business Doo	ments	Analysis		
🗿 Add 80 🛛 🙀 Generate schema								
Business Document	0	Qualifier	Property	Representation	Car	Dasinana Document Droperty		
ChangeO64ddress	70	z old	Address	Address	1.1			
		0	StreetRumber	Nammer	0.1	Property Term + Furster		
		۵	Street	Takut	0.1	Presety Term Sudifier		
	v D	2 Nev	Address	Address	1.1			
		۵	Streetlunber	Bammer	0.1	Representation Term + Darson		
		6	Street	Tekst	0.1	Order + 6 🔅		
	۲۵	4	Percon	Person	0.1	Cardinality + D + Hin 1 + Hax - unbounded		
		0	FirstName	Takit	00	Definition + Human being		
	1	۵	LartName	Tekst	00			
						Analyst Notes		
						(and (and)		
						Edit Save Cancel		
1.00						1		
Filter versions	0	Add Property						

The Ministry of Justice's motivations for using RDF / OWL with CCTS

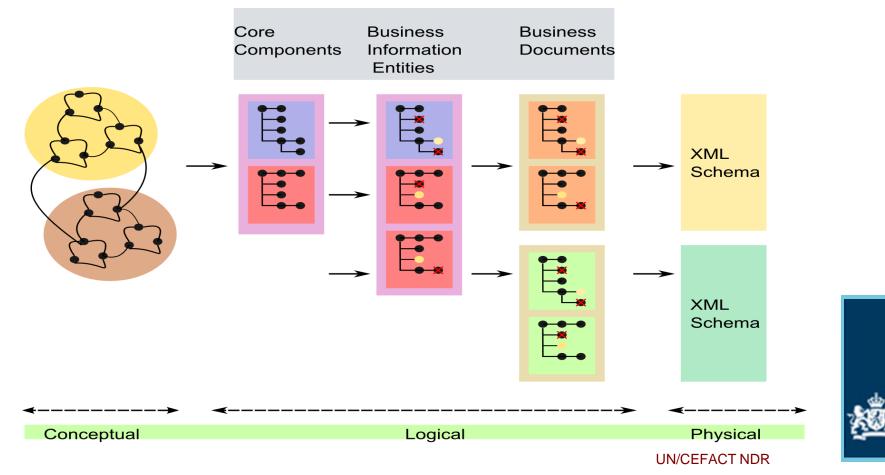
- □ Past: approaches were limited
 - Version control only for each project.
 - No reuse and much manual work


□ Now: use of RDF/OWL means

- Conceptual models
 - no longer in the heads of the modelers.
- Traceability

TopQuadrant[™]

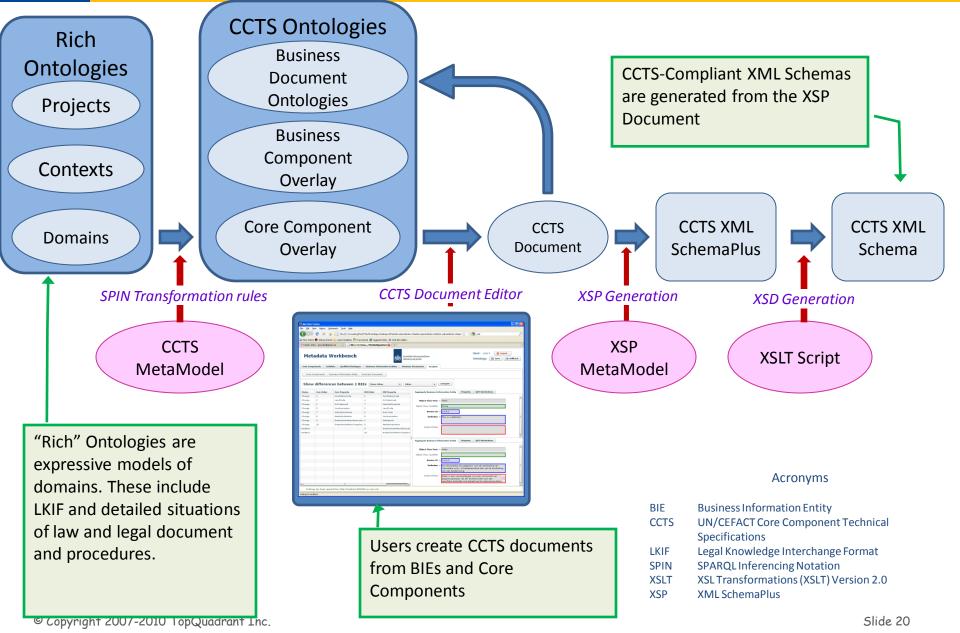
- Impact assessment/version control no longer done manually
- Reuse of
 - Components
 - Vocabularies and code-lists


Future: support for inferencing and ontology-based process design

Ontology-Driven Approach to Message Design for Interoperability

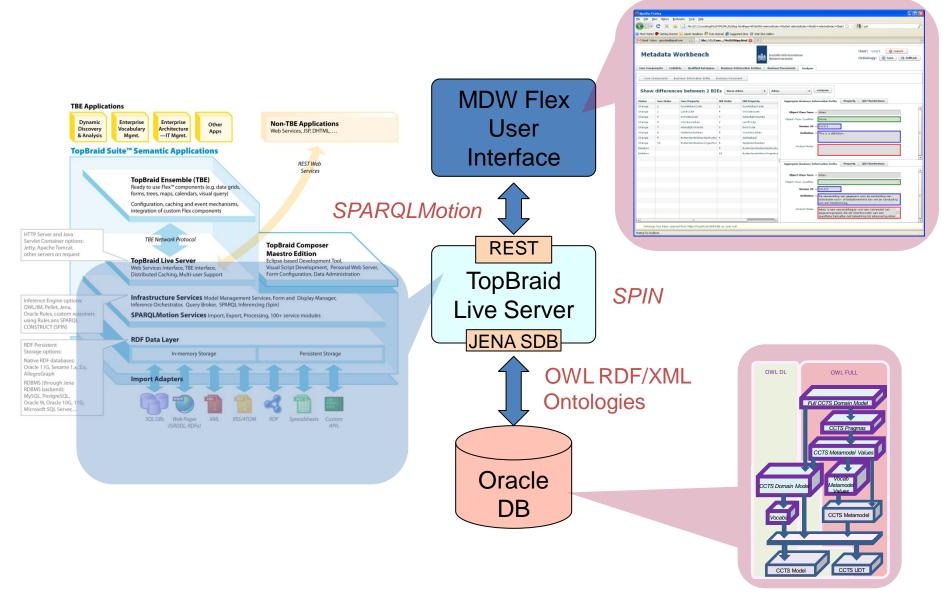
Solution: Ontology-Based Metadata Workbench:

Transform Domain Models into CCTS Ontologies and allow Business Analysts to assemble business documents for electronic messages from Component Parts.



TopQuadrant™


TopQuadrant™


Creation of XML Message Schemas

Metadata Workbench: Solution Architecture

TopQuadrant™

Metadata Workbench: Key Solution Capabilities

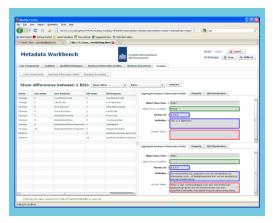
- CCTS Component and Business Entity Construction
 - * Reusable Core Information Components
 - * Purpose-specific Business Information Entities from Core Components
 - Susiness Documents (electronic messages) by combining one of more Information Entities
- Model Transformations
 - Domain Model Import
 - Generation of CCTS OWL Models from Domain Models
 - Generation of XML Schemas for Business Documents
- Vocabulary Management
 - * Code Lists and Data Types
 - Terms, Qualifiers and Constraints in the form of Metadata
- Model Management and Evolution
 - Versioning, comparison, governance, difference comparisons

Demo: What you are going to see

Scenario: Creating a Business Document

UI Walkthrough

 Core Components, Business Information Entities (BIEs) and Aggregate BIEs


Data Types:

TopQuadrant[™]

- Unqualified and Qualified Data Types (UDTs and QDTs)
- Vocabularies and Codelists
- CCTS Metadata
- "Change of Address" Business Document
- XML Schema Generation
- Version and Change Management
- "Under the Hood"
 - Ontology Models
 - SPIN rules and SPARQL queries
 - SPARQLMotion scripts

Metadata Workb	ench		Justitiële Informatiedienst Ministrie van Justicie			
Core Components Codelists Que	Generate XSD Schema					L
🗿 Add BD 🛛 🔗 Generate schema	Companient Type	Business Documents			Ĥ	Ľ
Business Document A	Bare URI .	https://www.justid.nl/ontologi	ies/ccts/bie/example.owl)	- 11	Ŀ
ChangeOfAddress	Multiple Namespaces	2			- 11	Ŀ
	Prefix •	bd-user1			- 11	E
	Schema filename	behaver5			- 11	E
	XILT filename	το				e
	Ontoiogy model #	https://www.justid.nl/antolagies/	cits/bie/full/example.oxl		- 11	١.
		<pre>Cami version="1.0" encoding=" Scrp:XSP aminable" example="https://www.justid.nl/s aminaable"example</pre>				1
		UChangeOfAddress" xmlns:ods- xmlns:odk*om:unioneerunoef SchemaNodule:2" xmlns:ixc="Mit xmlns:ixs="http://www.v3.org/20	lact (data is peofication) Unqualifie to://www.xspl.us/schemas/xc.xs	d0-ataTypes 🎞	- 1	l
	😥 saveX5P		() saves	SD	. Į	F
					•	8
Filter versions			64	serate X5D	Close	E
Search 🔍						,

In Conclusion

An Ontology-Driven XML Message Builder based on UN/CEFACT CCTS is proving to have the following benefits:

Business Benefits

- Accurate communication between organizations
- Agility in response to legislation changes
- Data Quality Guarantees
- Reduced Message Schema Development Costs
- Technical Benefits
 - Reuse
 - Semantic Consistency
 - Traceability
 - Version and Change Management

Semantic Web Technologies and TopBraid Suite were key to the implementation.

Some Resources

- "The Netherlands Ministry of Justice Metadata Workbench: Composing XML Message Schemas from OWL Models", Ralph Hodgson, Harry Biersteker
 - <u>http://www.enterprisedatajournal.com/article/netherlands-</u> <u>ministry-justice-metadata-workbench-composing-xml-message-</u> <u>schemas-owl-models.htm</u>

UN/CEFACT CCTS Specifications

- http://www.unece.org/cefact/codesfortrade/CCTS_index.htm
- SPIN, SPARQL Inferencing Notation
 - http://www.spinrdf.org
- XML SchemaPlus
 - http://www.xspl.us

The Netherlands Ministry of Justice Metadata Workbench: Composing XML Message Schemas from OWL Models

SHARE Prin

The MoJ is challenged to handle the complexity of electronic message exchange tith ten central information systems on a government level, specialized information systems of the criminal chain, wenile chain, immigration services and over hverity organizations communication is a big undertaking. As a principal approximation of the Crasting of the Division and the Division of the Criminal and the complexity of the criminal chain.

Thank You

For further feedback and information contact Tom Fitzgerald: E-mail: <u>tfitzgerald@topquadrant.com</u> (W): +1 813 319 5493 (C): +1 813 892 9111

